3.491 \(\int \frac{\left (c+d x+e x^2+f x^3\right ) \sqrt{a+b x^4}}{x^4} \, dx\)

Optimal. Leaf size=357 \[ \frac{\sqrt [4]{b} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} \left (3 \sqrt{a} e+\sqrt{b} c\right ) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{3 \sqrt [4]{a} \sqrt{a+b x^4}}-\frac{\sqrt{a+b x^4} \left (c-3 e x^2\right )}{3 x^3}-\frac{\sqrt{a+b x^4} \left (d-f x^2\right )}{2 x^2}+\frac{1}{2} \sqrt{b} d \tanh ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a+b x^4}}\right )-\frac{2 e \sqrt{a+b x^4}}{x}+\frac{2 \sqrt{b} e x \sqrt{a+b x^4}}{\sqrt{a}+\sqrt{b} x^2}-\frac{2 \sqrt [4]{a} \sqrt [4]{b} e \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{\sqrt{a+b x^4}}-\frac{1}{2} \sqrt{a} f \tanh ^{-1}\left (\frac{\sqrt{a+b x^4}}{\sqrt{a}}\right ) \]

[Out]

(-2*e*Sqrt[a + b*x^4])/x + (2*Sqrt[b]*e*x*Sqrt[a + b*x^4])/(Sqrt[a] + Sqrt[b]*x^
2) - ((c - 3*e*x^2)*Sqrt[a + b*x^4])/(3*x^3) - ((d - f*x^2)*Sqrt[a + b*x^4])/(2*
x^2) + (Sqrt[b]*d*ArcTanh[(Sqrt[b]*x^2)/Sqrt[a + b*x^4]])/2 - (Sqrt[a]*f*ArcTanh
[Sqrt[a + b*x^4]/Sqrt[a]])/2 - (2*a^(1/4)*b^(1/4)*e*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt
[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticE[2*ArcTan[(b^(1/4)*x)/a^(1/4)],
 1/2])/Sqrt[a + b*x^4] + (b^(1/4)*(Sqrt[b]*c + 3*Sqrt[a]*e)*(Sqrt[a] + Sqrt[b]*x
^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a
^(1/4)], 1/2])/(3*a^(1/4)*Sqrt[a + b*x^4])

_______________________________________________________________________________________

Rubi [A]  time = 0.823848, antiderivative size = 357, normalized size of antiderivative = 1., number of steps used = 15, number of rules used = 14, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.467 \[ \frac{\sqrt [4]{b} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} \left (3 \sqrt{a} e+\sqrt{b} c\right ) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{3 \sqrt [4]{a} \sqrt{a+b x^4}}-\frac{\sqrt{a+b x^4} \left (c-3 e x^2\right )}{3 x^3}-\frac{\sqrt{a+b x^4} \left (d-f x^2\right )}{2 x^2}+\frac{1}{2} \sqrt{b} d \tanh ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a+b x^4}}\right )-\frac{2 e \sqrt{a+b x^4}}{x}+\frac{2 \sqrt{b} e x \sqrt{a+b x^4}}{\sqrt{a}+\sqrt{b} x^2}-\frac{2 \sqrt [4]{a} \sqrt [4]{b} e \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{\sqrt{a+b x^4}}-\frac{1}{2} \sqrt{a} f \tanh ^{-1}\left (\frac{\sqrt{a+b x^4}}{\sqrt{a}}\right ) \]

Antiderivative was successfully verified.

[In]  Int[((c + d*x + e*x^2 + f*x^3)*Sqrt[a + b*x^4])/x^4,x]

[Out]

(-2*e*Sqrt[a + b*x^4])/x + (2*Sqrt[b]*e*x*Sqrt[a + b*x^4])/(Sqrt[a] + Sqrt[b]*x^
2) - ((c - 3*e*x^2)*Sqrt[a + b*x^4])/(3*x^3) - ((d - f*x^2)*Sqrt[a + b*x^4])/(2*
x^2) + (Sqrt[b]*d*ArcTanh[(Sqrt[b]*x^2)/Sqrt[a + b*x^4]])/2 - (Sqrt[a]*f*ArcTanh
[Sqrt[a + b*x^4]/Sqrt[a]])/2 - (2*a^(1/4)*b^(1/4)*e*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt
[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticE[2*ArcTan[(b^(1/4)*x)/a^(1/4)],
 1/2])/Sqrt[a + b*x^4] + (b^(1/4)*(Sqrt[b]*c + 3*Sqrt[a]*e)*(Sqrt[a] + Sqrt[b]*x
^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a
^(1/4)], 1/2])/(3*a^(1/4)*Sqrt[a + b*x^4])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 81.2073, size = 325, normalized size = 0.91 \[ - \frac{2 \sqrt [4]{a} \sqrt [4]{b} e \sqrt{\frac{a + b x^{4}}{\left (\sqrt{a} + \sqrt{b} x^{2}\right )^{2}}} \left (\sqrt{a} + \sqrt{b} x^{2}\right ) E\left (2 \operatorname{atan}{\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}} \right )}\middle | \frac{1}{2}\right )}{\sqrt{a + b x^{4}}} - \frac{\sqrt{a} f \operatorname{atanh}{\left (\frac{\sqrt{a + b x^{4}}}{\sqrt{a}} \right )}}{2} + \frac{\sqrt{b} d \operatorname{atanh}{\left (\frac{\sqrt{b} x^{2}}{\sqrt{a + b x^{4}}} \right )}}{2} + \frac{2 \sqrt{b} e x \sqrt{a + b x^{4}}}{\sqrt{a} + \sqrt{b} x^{2}} - \frac{2 e \sqrt{a + b x^{4}}}{x} - \frac{\sqrt{a + b x^{4}} \left (d - f x^{2}\right )}{2 x^{2}} - \frac{\sqrt{a + b x^{4}} \left (c - 3 e x^{2}\right )}{3 x^{3}} + \frac{\sqrt [4]{b} \sqrt{\frac{a + b x^{4}}{\left (\sqrt{a} + \sqrt{b} x^{2}\right )^{2}}} \left (\sqrt{a} + \sqrt{b} x^{2}\right ) \left (3 \sqrt{a} e + \sqrt{b} c\right ) F\left (2 \operatorname{atan}{\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}} \right )}\middle | \frac{1}{2}\right )}{3 \sqrt [4]{a} \sqrt{a + b x^{4}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((f*x**3+e*x**2+d*x+c)*(b*x**4+a)**(1/2)/x**4,x)

[Out]

-2*a**(1/4)*b**(1/4)*e*sqrt((a + b*x**4)/(sqrt(a) + sqrt(b)*x**2)**2)*(sqrt(a) +
 sqrt(b)*x**2)*elliptic_e(2*atan(b**(1/4)*x/a**(1/4)), 1/2)/sqrt(a + b*x**4) - s
qrt(a)*f*atanh(sqrt(a + b*x**4)/sqrt(a))/2 + sqrt(b)*d*atanh(sqrt(b)*x**2/sqrt(a
 + b*x**4))/2 + 2*sqrt(b)*e*x*sqrt(a + b*x**4)/(sqrt(a) + sqrt(b)*x**2) - 2*e*sq
rt(a + b*x**4)/x - sqrt(a + b*x**4)*(d - f*x**2)/(2*x**2) - sqrt(a + b*x**4)*(c
- 3*e*x**2)/(3*x**3) + b**(1/4)*sqrt((a + b*x**4)/(sqrt(a) + sqrt(b)*x**2)**2)*(
sqrt(a) + sqrt(b)*x**2)*(3*sqrt(a)*e + sqrt(b)*c)*elliptic_f(2*atan(b**(1/4)*x/a
**(1/4)), 1/2)/(3*a**(1/4)*sqrt(a + b*x**4))

_______________________________________________________________________________________

Mathematica [C]  time = 0.891044, size = 295, normalized size = 0.83 \[ \frac{-\sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} \left (\left (a+b x^4\right ) \left (2 c+3 x \left (d+2 e x-f x^2\right )\right )-3 \sqrt{b} d x^3 \sqrt{a+b x^4} \tanh ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a+b x^4}}\right )+3 \sqrt{a} f x^3 \sqrt{a+b x^4} \tanh ^{-1}\left (\frac{\sqrt{a+b x^4}}{\sqrt{a}}\right )\right )-4 \sqrt{b} x^3 \sqrt{\frac{b x^4}{a}+1} \left (3 \sqrt{a} e+i \sqrt{b} c\right ) F\left (\left .i \sinh ^{-1}\left (\sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} x\right )\right |-1\right )+12 \sqrt{a} \sqrt{b} e x^3 \sqrt{\frac{b x^4}{a}+1} E\left (\left .i \sinh ^{-1}\left (\sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} x\right )\right |-1\right )}{6 x^3 \sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} \sqrt{a+b x^4}} \]

Antiderivative was successfully verified.

[In]  Integrate[((c + d*x + e*x^2 + f*x^3)*Sqrt[a + b*x^4])/x^4,x]

[Out]

(-(Sqrt[(I*Sqrt[b])/Sqrt[a]]*((a + b*x^4)*(2*c + 3*x*(d + 2*e*x - f*x^2)) - 3*Sq
rt[b]*d*x^3*Sqrt[a + b*x^4]*ArcTanh[(Sqrt[b]*x^2)/Sqrt[a + b*x^4]] + 3*Sqrt[a]*f
*x^3*Sqrt[a + b*x^4]*ArcTanh[Sqrt[a + b*x^4]/Sqrt[a]])) + 12*Sqrt[a]*Sqrt[b]*e*x
^3*Sqrt[1 + (b*x^4)/a]*EllipticE[I*ArcSinh[Sqrt[(I*Sqrt[b])/Sqrt[a]]*x], -1] - 4
*Sqrt[b]*(I*Sqrt[b]*c + 3*Sqrt[a]*e)*x^3*Sqrt[1 + (b*x^4)/a]*EllipticF[I*ArcSinh
[Sqrt[(I*Sqrt[b])/Sqrt[a]]*x], -1])/(6*Sqrt[(I*Sqrt[b])/Sqrt[a]]*x^3*Sqrt[a + b*
x^4])

_______________________________________________________________________________________

Maple [C]  time = 0.023, size = 362, normalized size = 1. \[ -{\frac{c}{3\,{x}^{3}}\sqrt{b{x}^{4}+a}}+{\frac{2\,bc}{3}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticF} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}}-{\frac{d}{2\,a{x}^{2}} \left ( b{x}^{4}+a \right ) ^{{\frac{3}{2}}}}+{\frac{{x}^{2}bd}{2\,a}\sqrt{b{x}^{4}+a}}+{\frac{d}{2}\sqrt{b}\ln \left ( \sqrt{b}{x}^{2}+\sqrt{b{x}^{4}+a} \right ) }-{\frac{e}{x}\sqrt{b{x}^{4}+a}}+{2\,ie\sqrt{a}\sqrt{b}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticF} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}}-{2\,ie\sqrt{a}\sqrt{b}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticE} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}}+{\frac{f}{2}\sqrt{b{x}^{4}+a}}-{\frac{f}{2}\sqrt{a}\ln \left ({\frac{1}{{x}^{2}} \left ( 2\,a+2\,\sqrt{a}\sqrt{b{x}^{4}+a} \right ) } \right ) } \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(1/2)/x^4,x)

[Out]

-1/3*c/x^3*(b*x^4+a)^(1/2)+2/3*c*b/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2
)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*EllipticF(x*(I/a^(1
/2)*b^(1/2))^(1/2),I)-1/2*d/a/x^2*(b*x^4+a)^(3/2)+1/2*d*b/a*x^2*(b*x^4+a)^(1/2)+
1/2*d*b^(1/2)*ln(b^(1/2)*x^2+(b*x^4+a)^(1/2))-e*(b*x^4+a)^(1/2)/x+2*I*e*b^(1/2)*
a^(1/2)/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b
^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I)-2*I*e
*b^(1/2)*a^(1/2)/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/
a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*EllipticE(x*(I/a^(1/2)*b^(1/2))^(1/2)
,I)+1/2*f*(b*x^4+a)^(1/2)-1/2*f*a^(1/2)*ln((2*a+2*a^(1/2)*(b*x^4+a)^(1/2))/x^2)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\sqrt{b x^{4} + a}{\left (f x^{3} + e x^{2} + d x + c\right )}}{x^{4}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(b*x^4 + a)*(f*x^3 + e*x^2 + d*x + c)/x^4,x, algorithm="maxima")

[Out]

integrate(sqrt(b*x^4 + a)*(f*x^3 + e*x^2 + d*x + c)/x^4, x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{\sqrt{b x^{4} + a}{\left (f x^{3} + e x^{2} + d x + c\right )}}{x^{4}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(b*x^4 + a)*(f*x^3 + e*x^2 + d*x + c)/x^4,x, algorithm="fricas")

[Out]

integral(sqrt(b*x^4 + a)*(f*x^3 + e*x^2 + d*x + c)/x^4, x)

_______________________________________________________________________________________

Sympy [A]  time = 7.04955, size = 235, normalized size = 0.66 \[ \frac{\sqrt{a} c \Gamma \left (- \frac{3}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{3}{4}, - \frac{1}{2} \\ \frac{1}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 x^{3} \Gamma \left (\frac{1}{4}\right )} - \frac{\sqrt{a} d}{2 x^{2} \sqrt{1 + \frac{b x^{4}}{a}}} + \frac{\sqrt{a} e \Gamma \left (- \frac{1}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{2}, - \frac{1}{4} \\ \frac{3}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 x \Gamma \left (\frac{3}{4}\right )} - \frac{\sqrt{a} f \operatorname{asinh}{\left (\frac{\sqrt{a}}{\sqrt{b} x^{2}} \right )}}{2} + \frac{a f}{2 \sqrt{b} x^{2} \sqrt{\frac{a}{b x^{4}} + 1}} + \frac{\sqrt{b} d \operatorname{asinh}{\left (\frac{\sqrt{b} x^{2}}{\sqrt{a}} \right )}}{2} + \frac{\sqrt{b} f x^{2}}{2 \sqrt{\frac{a}{b x^{4}} + 1}} - \frac{b d x^{2}}{2 \sqrt{a} \sqrt{1 + \frac{b x^{4}}{a}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((f*x**3+e*x**2+d*x+c)*(b*x**4+a)**(1/2)/x**4,x)

[Out]

sqrt(a)*c*gamma(-3/4)*hyper((-3/4, -1/2), (1/4,), b*x**4*exp_polar(I*pi)/a)/(4*x
**3*gamma(1/4)) - sqrt(a)*d/(2*x**2*sqrt(1 + b*x**4/a)) + sqrt(a)*e*gamma(-1/4)*
hyper((-1/2, -1/4), (3/4,), b*x**4*exp_polar(I*pi)/a)/(4*x*gamma(3/4)) - sqrt(a)
*f*asinh(sqrt(a)/(sqrt(b)*x**2))/2 + a*f/(2*sqrt(b)*x**2*sqrt(a/(b*x**4) + 1)) +
 sqrt(b)*d*asinh(sqrt(b)*x**2/sqrt(a))/2 + sqrt(b)*f*x**2/(2*sqrt(a/(b*x**4) + 1
)) - b*d*x**2/(2*sqrt(a)*sqrt(1 + b*x**4/a))

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\sqrt{b x^{4} + a}{\left (f x^{3} + e x^{2} + d x + c\right )}}{x^{4}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(b*x^4 + a)*(f*x^3 + e*x^2 + d*x + c)/x^4,x, algorithm="giac")

[Out]

integrate(sqrt(b*x^4 + a)*(f*x^3 + e*x^2 + d*x + c)/x^4, x)